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FINAL REPORT W911NF1210125. Inducing the Formation of Functional Macroscopic Assemblies 

Through Programmed Orthogonal Supramolecular Interactions. PI. Adam B. Braunschweig, University of 

Miami, Coral Gables, FL 33146. Email: a.braunschweig@miami.edu. 

 

1. Statement of the Problem Studied. The goal of the 

proposed work was to develop self-assembling materials that 

form complex architectures and emergent stimuli-responses 

as a result of complementary supramolecular interactions. 

While this approach to achieving functional molecular 

architectures is common in natural materials, researchers 

have been unable to prepare systems with emergent 

properties and sophisticated stimuli responses comparable to 

biological materials. The innovation of the proposed research 

derives from this simple idea: that materials where the 

position of each atom in the structure is defined precisely can 

be obtained by programming primitive interactions onto 

complementary small molecule scaffolds and thereby 

overcome the disorder that is characteristic of most organic 

and polymeric materials. This approach represents a 

straightforward route towards addressing the enormous 

challenge of supramolecular engineering and is a first step 

towards achieving biomimetic sophistication with synthetic 

systems. 

 

2. Summary of Most Important Results. 

  The most important result obtained was the synthesis 

of molecular components that assemble into complex 

architectures, and the study of the interaction between these 

complementary components to develop a new quantitative 

model for their aggregation into heterosuperstructures.  The aggregation of chiral and achiral 

diketopyrrolopyrrole-based (DPP) donors with a 1,7-substituted perylene diimide (PDI) acceptor (Figure 

1A) was studied by various spectroscopyic methods. Upon mixing in solution, the PDI and DPPs 

assemble into well-ordered superstructures (Figure 1C) because of: (1) complementary triple H-bonds 

along one spatial axis (x), (2) large aromatic surfaces that drive aggregation via π•••π stacking along an 

orthogonal axis (z), and (3) solubilizing alkyl chains appended to each aromatic core that can interact 

along the third orthogonal axis (y) (Figure 1B). Chiral side chains have been introduced onto the DPP 

donor 1 so distinct Cotton effects that arise as a result of the formation of chiral superstructures can 

provide additional information on the emergence of order.
1
 Variable temperature (VT) UV/Vis and CD 

spectroscopic measurements revealed that the PDIs associate to disordered DPP aggregates, which 

subsequently reorganize into helical heteroaggregates of a single chirality. A new thermodynamic model 

was developed that quantifies the binding parameters (ΔH° and ΔS°) associated with each interaction (H-

bonding and π•••π stacking) and, with the aid of electronic structure theory calculations, elucidates the 

subtle supramolecular cues that induce the transition from disordered aggregates into well-defined 

helices. 

 

Figure 1. A) DPP donor (red) and PDI 
acceptor (blue) molecules 1 – 3 are 

capable of B) heteroaggregation through a 
combination of H-bonding and π•••π 
stacking, resulting in C) well-ordered 
superstructures. 
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 DPP donors 1 and 2 have diamidopyridine 

(DAP) groups, which can form triple H-bonds with 

the diimide groups of PDI acceptor 3 (Figure 1a). 

The donors differ only by their N-alkyl chains: 1 

possesses homochiral (S)-2-methylbutyl side chains, 

and 2 has racemic 2-ethyloctyl chains. Like complex 

biological systems, these assemblies form from the 

combined effects of multiple noncovalent 

interactions working in unison, and the aim of this 

study was to derive models that describe how the 

effects of each individual interaction contribute to 

the formation of the resulting superstructure. 

Initially, the homoaggregation of 1 and 3 were 

analyzed independently by UV/Vis spectroscopy to 

understand the role homoaggregation plays in the 

formation and structure of heteroaggregates. This is 

an important initial study because the aggregation of 

heteroaggregates is so complex that the aggregation 

of the individual components must first be 

investigated and understood, so their contribution to 

the heteroaggregates can be accounted for. The 

UV/Vis spectrum of 1 in toluene displays absorption 

maxima at 538 and 580 nm at 25°C, which are the 

result of dipole allowed S0–S1 electronic transitions. 

These bands undergo bathochromic shifts with 

increasing sharpness, which are spectral signatures 

of J-type aggregation (Figure 2A). Although π-

stacked chromophores with chiral side-chains often form chiral superstructures,
1
 the absorbance 

intensities of 1 exhibit a sigmoidal dependence with temperature and no signal was observed in VT CD 

experiments.
2
 These observations are characteristic of isodesmic stacking, where the Kas describing the 

π•••π stacking is constant regardless of aggregate size.
3
 By fitting the changes in absorbance of 1 with 

changes in temperature to an isodesmic model,
4
 an excellent fit was obtained to provide ΔH° and ΔS° 

values of –7.4 ± 0.5 kcal mol
-1

 and –3.0 ± 2.0 e.u. respectively, indicating the π•••π stacking is 

enthalpically driven (Figure 2B). DFT calculations (B3LYP/6-31G(d,p)) on homoaggregates of a DPP 

that has methyl side chains to simplify the calculation revealed a slip-stacked binding geometry with 

thiophenes overlapping the DPP cores (Figure 2C and 2D). This calculated structure is consistent with the 

UV/Vis data and a similar slip-stacked geometry observed previously in an X-ray crystal structure of 

DPP-thiophene oligomers.
5
 The energy of binding, ΔE = –10.5 kcal mol

-1
, from the DFT calculations 

agrees well with the ΔH° derived from the fitting.  

 The aim of this project was to incorporate several different types of noncovalent interactions into 

the superstructures to obtain unprecedented control over hierarchical assembly in organic materials, and 

to control aggregation, each of the individual interaction must be investigated qualitatively and 

quantitatively. H-bonding is known to affect the supramolecular assembly of 1,7-substituted PDIs, so the  

homoaggregation of 3 was also investigated by VT UV/Vis spectroscopy. The UV/Vis spectra of 1,7-

 

Figure 2. A) VT UV/Vis spectra of a 20 µM solution 
of 1 in toluene. B) The absorption peak at 540 nm 
in the VT UV/Vis of 1 fit to an isodesmic model. C) 

Top and side view of a DFT structure of a π•••π 
stacked DPP dimer. D) VT UV/Vis spectra of a 35 
µM solution of 3 in toluene. E) The absorption peak 
at 592 nm in the VT UV/Vis of 3. F) Top and side 

view of a DFT structure of a π•••π stacked PDI 
dimer. Dashed lines are run along the N–N´ axis, 
and are shown to indicate the twist angle between 
the stacked PDIs. 
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substituted PDIs typically display characteristic peaks arising from the S0 – S1 transition
6
 that are 

broadened because of twisting in the perylene ring system
7
 that inhibits aggregation beyond π-stacked 

dimers.
8
 Previously studied PDIs without N-substituents display a sharp peak that are assigned to the J-

aggregation of π•••π stacked dimers interconnected by H-bonding.
9
 For PDI 3, the UV/Vis spectra 

revealed a sharp absorbance maximum at 520 nm in toluene with a pronounced vibronic fine structure. 

Upon cooling, these peaks decrease with a concomitant increase of a broad band with a maximum at 592 

nm (Figure 2E). These spectral changes are similar to non-1,7-substituted PDIs whose π•••π aggregation 

is intermediate between J- or H-type
10

 as a result of rotationally-displaced stacked PDIs.
11

 DFT 

calculations of a π•••π stacked dimer of 3 revealed an offset, φ, of 22° between the long axes (Figure 2F) 

and thus, we deduce that the new absorption peak to a similar stacking geometry. A plot of the absorbance 

at 592 nm versus temperature reveals negligible aggregation above 37 °C. Below 37 °C, the absorption 

increases quickly, suggesting nucleation-growth assembly
12

 —where an initial disfavored binding event 

precludes association until a critical temperature is reached, after which a new thermodynamically 

favored equilibrium drives the assembly into π-stacked superstructures (Figure 2F). Suspecting 

intermolecular H-bonding plays a key role in assembly, the VT UV/Vis experiment was repeated with a 

bis-N-cyclohexyl derivative of 3 or in 3% DMSO in toluene, both of which inhibit H-bonding.
2
 No 

spectral changes that indicate π-stacking were observed in either control experiment, confirming that H-

bonding promotes the π-stacking of 3. These investigations into the homoaggregation of 1 and 3 are 

necessary to understand how the self-assembly of the individual components contributes to the structure 

and assembly of the multicomponent heteroaggregate assemblies. 

 Heteroaggregation arising from H-

bonding and π•••π stacking was investigated by 

VT UV/Vis spectroscopy on a 2:1 mixture of 1 

and 3, respectively, in toluene. At 40 °C, the 

spectrum is a linear composite of the individual 

spectra (Figure 3A), indicating that mixed π-

heteroaggregates are not present at high 

temperature. Upon cooling, the absorbance 

maxima of 3 decrease and two new bands arise 

at 563 and 615 nm, which are assigned to a S0–S1 

transition from the π•••π stacking of 3. Several 

aspects of the spectrum indicate heteroaggregate 

formation: 1) the absorbance at 615 nm begins to 

increase in the mixture at 21 °C, which is a much 

lower temperature than was observed for the 

onset of homoaggregation of 3 (39 °C), 2) the 

new bands at 563 and 615 nm are much sharper 

than the broad peaks formed by homoaggregates 

of 3, suggesting J-type aggregation, meaning the 

π-stacked PDIs adopt a different geometry in the 

heteroaggregates, and 3) the change in the absorption at 615 nm for the mixture of 1 and 3 is more 

gradual (Figure 3C) than for the homoaggregates of 3, suggesting that homoaggregation pathways are 

suppressed and a different assembly mechanism is operating that is driven by the triple H-bonding 

between 1 and 3. Prior to the appearance of the PDI π-stacking bands 563 and 615 nm, the transitions 

 

Figure 3. A) VT UV/Vis and B) CD spectra of a 70 µM 
solution of 1 in toluene with 0.5 molar equivalents of 3. 

C) The absorbance () and elipticity (Θ) at 615 nm 
obtained by VT UV/Vis and CD respectively fit to a 
cooperative helix formation model.

11
 D) Top and side 

view of the DFT structure of the H-bonded and π•••π 
stacked 1:3 dimer. Dashed lines are run along the N–N´ 

axis, and are shown to indicate the twist angle between 
the stacked PDIs. 
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previously assigned to π-stacking of 1 (538 and 580 nm) increase steadily with decreasing temperature, 

suggesting extensive homoaggregation of 1 precedes heteroaggregate formation. A bisignated Cotton 

effect, with peaks at 563 and 615 nm, matching the π-stacking peaks of the achiral PDI, appeared in the 

VT CD spectra. The bisignated effect is a consequence of electronic coupling between conjugated 

segments in a helical array (Figure 3B).
13

 Notably, the transition temperature in the VT CD spectrum of 

the heteroaggregates is 5 °C lower than in the UV/Vis measurements, suggesting that only after the 

association of several molecules of 3 onto disordered aggregates of 1 does the rearrangement into chiral 

heteroaggregate helices occur (Figure 3C), and the emergent chirality in these superstructures is the direct 

result of the PDI solubilizing chains interacting along the y-axis. The VT UV/Vis experiments were 

repeated in a mixture of 2 and 3 (Figure S5), and while the same trends were observed in the VT UV/Vis 

spectra, no Cotton effect arose in the CD spectrum of 2 and 3.
2
 The structure of the heteroaggregate of 1 

and 3 was modeled by DFT calculations using methyl and ethyl solubilizing chains on DPP and PDI, 

respectively. While the relative orientations of the DPPs in the heteroaggregates remain relatively 

unchanged compared to the homoaggregates,  the π-offset, φ, between PDIs in the heteroaggregates (11
o
, 

Figure 3d) changed significantly compared to PDI homoaggregates (22
o
), indicating that the preferred 

conformation of the DPPs dictates the π•••π stacking angle in the heteroaggregate superstructure. The 

assessment of PDI J-aggregation from the VT UV/Vis spectrum of the heteroaggregate is supported by 

the head-to-tail arrangement of the PDIs in the calculated structure (Figure 3D).
14

 These observations 

suggest that a new assembly mechanism that has not been described previously in supramolecular systems 

is directing the formation of these hierarchical donor-acceptor structures. 

 The spectroscopic data were used to 

derive a new quantitative assembly model that 

describes formation of heteroaggregates that 

arise from both H-bonding and π•••π stacking. 

The corresponding thermodynamic parameters 

for each interaction were obtained by fitting the 

changes in absorption with temperature to this 

model. There exist few quantitative models that 

describe the formation of heteroaggregates that 

employ multiple orthogonal interactions.
4
 The 

data indicate that PDIs bind to disordered stacks 

of DPPs to produce chiral superstructures 

(Figure 4), which leaves an available H-bonding site on each PDI that can potentially be occupied by an 

additional DPP at higher concentrations. In the model (Figure 4), disordered homoaggregates of 1 

assemble isodesmically according to the microscopic binding constant K1. Since there are four identical 

pathways by which this process can occur, K1 is one-fourth the experimentally observed macroscopic Ka. 

The initial association event of one molecule of 3 to a stack of 1 of any size is governed by microscopic 

association constant K2 (Figure 4B). As there are two positions where H-bonding takes place in 3 and n 

points on a stack of 1, where n denotes the number of residues, the macroscopic Ka is 2nK2. Further 

association of 3 to the stacks are described by K2 and K3, where K3 is a dimensionless Ka that includes the 

energy contributions from π•••π stacking and any chelate cooperativity effects
15

 (Figure 4) associated with 

the aggregation of 3 within the 1 stacks. The resulting mass balance equations can be written as infinite 

series that describe the total concentration of each species, [PDI]t and [DPP]t, as a function of n that are 

both convergent and can be solved to obtain [PDI] and [DPP] for any value of K1, K2, K3, [PDI]t, and 

 

Figure 4. The proposed model for the heteroaggregation 

of the DPPs (red tiles) and PDIs (blue tiles) into chiral 
assemblies. 
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[DPP]t. ΔH° and ΔS° corresponding to K1 were fixed to the values previously obtained by studying the 

homoaggregation of 1 and held invariant. This new model can be used to make predictions about the 

assembly of hierarchical systems that form as a result of multiple orthogonal interactions, in particular 

when some of these interactions only arise in the heteroaggregate – a hallmark of complexity in biological 

assembly – and thus cannot be measured by studying the individual components. When both VT UV/Vis 

and CD measurements were simultaneously fit to the same parameter set, the ΔH° and ΔS° for K2 (–24.1 

± 0.1 kcal mol
-1

 and –70 ± 2 e.u.) and K3 (–13.5 ± 0.1 kcal mol
-1

 and –40 ± 1 e.u.) were obtained. These 

numbers compare well to the values of ΔE of –17.8 kcal mol
-1

 and –6.3 kcal mol
-1

, respectively, found by 

electronic structure theory calculations, although the calculations may underestimate the enthalpy by not 

accounting fully for cooperative stabilization. These thermodynamic parameters indicate that K2 is 

enthalpically driven, which is typical for H-bonded dimers. Interestingly, K3 is also enthalpically driven, 

but an entropic penalty is associated with the rearrangement of 3 into J-aggregates, presumably because 

the contorted perylene rings disfavor this stacking geometry. Nevertheless, the enthalpy associated with 

π-aggregation overcomes the disfavorable entropy below room temperature, which drives 

heterosuperstructure formation upon cooling. 

The self-assembly of heteroaggregates comprised of π-conjugated donors and acceptors could 

lead to synthetic hierarchical structures with functional complexity comparable to their biological 

counterparts, but models are needed that can describe the complex milieu of interactions involved in 

superstructure formation. By studying the heteroaggregation of a DPP donor and PDI acceptor, a new 

model was developed that elucidates the subtle structural cues that induce the transition from a disordered 

aggregate into a chiral helix. Using this new model, all thermodynamic parameters were quantitatively 

determined, and both H-bonding and the subsequent helix formation process were found to be 

enthalpically favored but entropically disfavored. This new model could be used to create ordered 

superstructures of donors and acceptors, which are increasingly investigated in the context of 

photovoltaics and for understanding fundamental aspects of charge and energy transport in self-assembled 

systems. It should be noted that, like the system described herein, natural self-assembled systems utilize 

multiple orthogonal noncovalent interactions that work in unison to form functional hierarchical 

nanostructures, thereby achieving “complexity out of simplicity”, which remains an elusive goal for 

chemists.
16
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